Structure-Preserving Colorization Based on Quaternionic Phase Reconstruction


A novel semiautomatic colorization method is proposed based on quaternionic phase reconstruction. In this method, each color pixel is represented as a quaternion, whose polar magnitude and polar phase are recovered from the intensity of original grayscale image and color scribbles of user’s manual input, respectively. To conduct structure-preserving colorization, color diffusion is restrained across global image structures, which are extracted using hierarchical edge representation along with structural importance measurement. To identify local spatial relationship between neighboring pixels, Gabor wavelets are applied to compute the similarity of local phase patterns. Our method is highlighted in well preserving image structures during colorization, where the color image is acquired by solving a linearly constrained quadratic optimization problem. Specifically, we develop a method to guide the user to scribble on the monochrome image, so that effective color propagation from less manual input can be expected. Experimental results demonstrate that our colorization method outperforms the state-of-the-art method in structural preservation and relatively better colorization results are available if the proposed rule of scribble user guidance is adopted.

Advances in Multimedia Information Processing - PCM 2009
Li Song
Li Song
Professor, IEEE Senior Member

Professor, Doctoral Supervisor, the Deputy Director of the Institute of Image Communication and Network Engineering of Shanghai Jiao Tong University, the Double-Appointed Professor of the Institute of Artificial Intelligence and the Collaborative Innovation Center of Future Media Network, the Deputy Secretary-General of the China Video User Experience Alliance and head of the standards group.