Hiding Private Information in Images From AI


Privacy protection attracts increasing concerns these days. People tend to believe that large social platforms will comply with the agreement to protect their privacy. However, photos uploaded by people are usually not treated to achieve privacy protection. For example, Facebook, the world’s largest social platform, was found leaking photos of millions of users to commercial organizations for big data analytics. A common analytical tool used by these commercial organizations is the Deep Neural Network (DNN). Today’s DNN can accurately identify people’s appearance, body shape, hobbies and even more sensitive personal information, such as addresses, phone numbers, emails, bank cards and so on. To enable people to enjoy sharing photos without worrying about their privacy, we propose an algorithm that allows users to selectively protect their privacy while preserving the contextual information contained in images. The results show that the proposed algorithm can select and perturb private objects to be protected among multiple optional objects so that the DNN can only identify non-private objects in images.

ICC 2020 - 2020 IEEE International Conference on Communications (ICC)
Li Song
Li Song
Professor, IEEE Senior Member

Professor, Doctoral Supervisor, the Deputy Director of the Institute of Image Communication and Network Engineering of Shanghai Jiao Tong University, the Double-Appointed Professor of the Institute of Artificial Intelligence and the Collaborative Innovation Center of Future Media Network, the Deputy Secretary-General of the China Video User Experience Alliance and head of the standards group.