Moving objects detection in dynamic scenes is a challenging task in many computer vision applications. Traditional background modeling methods do not work well in these situations since they assume a nearly static background. In this paper, a novel operator named spatial extended center-symmetric local binary pattern (SCS-LBP) for background modeling is proposed. It extracts spatial and temporal information simultaneously while has low complexity compared to the local binary pattern (LBP) operator. Then combining this operator with an improved temporal distribution estimation scheme, we propose a new background subtraction method. In our method, each pixel is modeled by a group of adaptive SCS-LBP histograms, which provides us with many advantages compared to traditional ones. Experimental results demonstrate the effectiveness and robustness of our method.