Personalized and Invertible Face De-Identification by Disentangled Identity Information Manipulation

Abstract

The popularization of intelligent devices including smartphones and surveillance cameras results in more serious privacy issues. De-identification is regarded as an effective tool for visual privacy protection with the process of concealing or replacing identity information. Most of the existing de-identification methods suffer from some limitations since they mainly focus on the protection process and are usually non-reversible. In this paper, we propose a personalized and invertible de-identification method based on the deep generative model, where the main idea is introducing a user-specific password and an adjustable parameter to control the direction and degree of identity variation. Extensive experiments demonstrate the effectiveness and generalization of our proposed framework for both face de-identification and recovery.

Li Song
Li Song
Professor, IEEE Senior Member

Professor, Doctoral Supervisor, the Deputy Director of the Institute of Image Communication and Network Engineering of Shanghai Jiao Tong University, the Double-Appointed Professor of the Institute of Artificial Intelligence and the Collaborative Innovation Center of Future Media Network, the Deputy Secretary-General of the China Video User Experience Alliance and head of the standards group.