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Abstract— This paper presents a review of parametric models 

for video quality estimation standardized in the past few years. 

The focus of this paper is the estimation of quality degradation 

caused by the compression artifacts. The models introduced in the 

paper contain the work of Telecommunication Standardization 

Section of the International Telecommunication Union (ITU-T) 

Study Group 9 and Study Group 12, standardized as ITU-T Rec. 

G.1070, ITU-T Rec. P.1201 series, ITU-T Rec. P.1202 series and 

ITU-T Rec. J.343.1. The core module estimating coding quality of 

each model is described with key algorithms and parametric 

formulas. The review of each model is presented and the strengths 

and weakness of each model are remarked. Finally, future work 

towards the development of an updated parametric QoE model 

for latest HEVC/H.265 is discussed. 

I. INTRODUCTION 

With the proliferation of video services among networks and 

mobile devices, applications such as Internet Protocol 

television, video conferencing system, video-on-demand, 

home and commercial surveillance are widely used. The 

service providers of such applications are dedicated to deliver 

the video that satisfies or even impresses the end users. This 

promotes the development of video quality assessment (VQA) 

aiming at providing tools for video real-time monitoring as 

well as adjustment of transmission and encoding setups to 

provide an overall satisfied quality of experience (QoE) from 

the users’ perspective.  

In recent years, different modeling and standardized efforts 

have been devoted and are consistently on going in order to 

assess or predict the perceived video quality depending on the 

applications and specific scenarios. Thus various evaluation 

models are necessary.  

Based on the presence of reference in the quality evaluation, 

the VQA models can be categorized into full-reference (FR), 

reduced-reference (RR), no-reference (NR) models. In the case 

of FR models, the original and the degraded video are directly 

compared, because of the access of the original video, FR is 

also called intrusive method. In the NR scenario, the evaluation 

of the degraded video is estimated without the original video, 

thus this category is called non-intrusive method. The RR 

scenario is somewhere between above mentioned two, i.e., only 

partial information about the original video is used in the 

evaluation process. NR VQA can be further divided into 

packet-layer model (PLM), bitstream-layer model (BLM) and 

hybrid model (HM). In PLM methods, the analysis is based on 

the IP (Internet Protocol) and RTP (Real Time Protocol) packet 

header information without the access to the decoded bitstream, 

which makes this model suitable for in-service quality 

management. BLM method estimates the subjective quality 

using partially or fully parsed bitstream information (i.e. 

payload information), which takes the content dependency of 

video quality into account that is not available in the PLM 

method. The HM method combines the previous two models 

and thus exploits the information both from the packet header 

and bitstream. For more detailed introduction to VQA, see [1]. 

NR VQA methods have a wide application scope since no 

additional information of original signal is required by the 

algorithm, thus the evaluation process can be carried out solely 

on the receiving end without causing intrusive effects to the 

encoding and delivering channel. Video coding is the 

preliminary step before transmission to limit the amount of data 

transmitted; NR VQA method is proved to be effective 

estimating the coding artifacts in this scenario. Other types of 

video artifacts including those caused by transmission channel 

or packet-loss are beyond the scope of this work, interesting 

readers can refer to [2], [3]. 

Parametric models predict the perceived video quality in the 

form of mathematical formulas based on the extracted set of 

parameters, relevant to the encoding process and video content 

or network conditions. Parametric models are effective and 

easily implemented since there is no need of full access to the 

original video source and the estimation is obtained as the 

direct result of the mathematical formulas. 

Based on the work of Video Quality Expert Group (VQEG) 

and other contributors, ITU-T has standardized some NR VQA 

parametric models. Among them, the ITU-T Rec. G.1070 

standardized in 2007 provides a PLM method based on the 

measurable parameters of the encoding process [4]. ITU-T Rec. 

P.1201 series, titled Parametric non-intrusive assessment of 

audiovisual media streaming quality (P.NAMS) and 

standardized in 2012 [5], provides a PLM method based on the 

payload information as it is available from packet headers and 

additional side-information. ITU-T Rec. P.1202 series, titled 

Parametric non-intrusive bit-stream assessment of video media 

streaming quality (P.NABMS) and standardized in 2012 [6], 

proposes a BLM method using parsed bit-stream but without 

fully parsed pixel information. ITU-T Rec. J.343.1 

standardized in 2014 [7], provides a HM method analyzing 

packet header information and video image data captured at the 



video player. 

Joskowicz et al. provide a review of 10 VQA NR parametric 

modes in 2012 [8], however only Rec. G.1070 model is 

included as a standardized effort. Yang et al. provide a general 

review of Rec. G.1070, P.NAMS and P.NBAMS model in 

2012 [9], but the analysis was conducted at the draft stage of 

Rec. P.1201 and Rec. P.1202 without the detailed algorithms 

and parametric formulas. Yamagishi and Gao provide a review 

of Rec. P.1201.1 [10], Garcia et al. provide a review of Rec. 

P.1201.2 [11], and Chen et al. proposed a review of Rec. 

P.1202.2 [12]. Up to the time of this paper, there is no work 

analyzing Rec. J.343.1 and there lacks a comprehensive review 

and comparison of ITU-T consistent efforts concerning the 

parametric VQA of compression artifacts. 

In this paper, we present a review of the above mentioned 

parametric NR models standardized by ITU-T recently. These 

models predict video quality in terms of mean opinion score 

(MOS) on a five-point absolute category rating (ACR) scale 

according to ITU-T P.910 [13]. The models’ parameters and 

comparisons are presented and the strengths and weakness of 

each model are remarked and summarized towards the 

development of a parametric model for HEVC/H.265 codec 

quality estimation. 

This paper is organized as follows: Section II describes the 

details of different parametric models. In Section III the 

performance of each model is presented. Section IV concludes 

the characteristics of each model and discusses activities 

towards an updated parametric model for the latest video 

coding standard - HEVC/H.265. Section V summarizes the 

results and the main contribution of this paper.  

II. PARAMETRIC MODELS  

In this section, different parametric models are presented. 

These models have been officially standardized by ITU-T. 

Each model is briefly described and the key parametric 

formulas and algorithms are detailed. 

A. ITU-T Rec. G.1070  

This recommendation describes a computational model for 

point-to-point interactive videophone applications over IP 

networks [4].The module estimates the video quality QV with 

compression artifacts as: 

 

1 codingQV I                                  (1) 

 

Where Icoding represents the basic video quality affected by 

the coding distortion under a combination of video bitrate brv 

(kbit/s) and video framerate frv (fps) according to (2). 
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The Ofr is an optimal frame rate that maximizes the video 

quality at each video bitrate, Iofr represents the maximum video 

quality at each video bitrate and Dfrv represents the degree of 

video quality robustness due to frame rate. 
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7 8vfr vD c c br                                  (5) 

 

In this model, the video content is not taken into account. As 

stated in the recommendation, the model handles video size 

between VGA (Video Graphic Array, 640x480 pixels) and 

QQVGA (Quarter Quarter VQA, 160x120 pixels). 

 

B.  ITU-T Rec. P.1201.1 

Recommendation ITU-T P.1201 [5] provides the framework 

for actually two algorithmic models described separately in 

ITU-T Rec. P.1201.1 [14] and ITU-T Rec. P.1201.2 [15]. 

These algorithms are aimed at monitoring the audio, video and 

audiovisual quality of IP-based video services with packet-

header information, the former standard focuses on lower 

resolution application areas such as mobile TV and the latter 

focuses on the higher resolution application areas such as IPTV. 

The two standards provide different VQA methods which are 

introduced in detail. 

The video quality estimation model in Rec. P.1201.1 

estimates video quality QV as follows: If video frame rate is 

larger than 24 fps, then compute QV with (6), else with (7). 
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Here Qcod denotes the video distortion due to compression 

and is calculated in equation (8) to (10), and cpxvideo denotes the 

video content complexity factor. 
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Video content complexity factor cpxvideo is the factor 

describing the content spatiotemporal complexity. The 

maximum value is 1.0, the initial value is 0.5, and the 

calculation is shown in (10). AvgByteI-frame is the average 

number of bytes per I-frame. Since the model analyzes only 

packet header information, the computational power of the 

model is very light, and the model can be applied to encrypted 

packets. Interested readers can refer to [10] for further 

information.  

C. ITU-T Rec. P.1201.2 

The video quality model in Rec. P.1201.2 [15] is 

decomposed as follows: 

 

100QV Qcod Qtra                           (11) 

 

Where QV is the predicted video-quality. Qcod is the quality 

distortion due to video compression, and Qtra is the quality 

distortion due to video packet loss, the latter is set to 0 since we 

are only interested in the quality evaluation with compression 

artifacts. 
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The quality distortion of video compression is given by 

equation (12) where bitPerPixel denotes the averaged bits of 

one pixel in the video sequence. cpxvideo estimates both the 

temporal and spatial complexity of the error-free encoded 

content: 
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S
I 

sc is the averaged I-frame size for scene sc (the first I-frame of 

the first scene is ignored). Z is the number of scenes in the 

video sequence, and Nsc is the number of Groups Of Pictures 

(GOPs) in scene sc. For the scene having the lowest S
I 

sc value, 

wsc = 16, otherwise wsc = 1. Since the value S
I 

sc differs more 

between contents in the case of low-to-medium bitrates, the 

cpxvideo parameter distinguishes the influence of the content 

complexity for low-to-medium bitrates only. Moreover, the use 

of a higher wsc value for the lowest S
I 

sc value highlights the 

impact of poor quality frames in the sequences, for the lowest 

S
I 

sc  yields the lowest quality and therefore has the highest 

weight on the overall quality [11]. 

The highlight of Rec. P.1201.2 is that it introduces the 

technique of scene detection to improve the overall model 

performance [16]. The proposed method for scene change 

detection in a video sequence is based on the assumption that 

modern encoders can detect abrupt scene changes and reset the 

GOP structure upon such detection, i.e. the scene cut picture is 

always encoded as an I-frame. Therefore, after the estimation 

of frame size and frame type of video sequence, the algorithm 

compares the size of each I-frame with that of previous I-

frames. The proposed method is presented in detail below.   

Let F
T 

k  denotes the size of the kth picture of type T, where T 

denotes I, P or B-frame. The scaling term I
k 

s  of the kth I-frame 

under consideration is computed by: 
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Where l is the index of the P-frame prior to the I-frame 

under examination, Lk is the number of P-frames in the 

previous GOP, and nP is the number of P-frames to be 

considered for the computation of the median. Subsequently, 

the following ratios of frame sizes per type are computed, 

where m is the index of the B-frame prior to the I-frame under 

examination, and nB is the number of B-frames to be 

considered for the mean. 
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Algorithm 1 Algorithm for scene change detection in 

P.1201.2 
1:  set k to the third I-frame index 
2:  while (k > 2 && not last I-frame) do 
3:  compute I

s 

k based on (15) 
4:  compute r

I 

k , r
P 

k , and r
B 

k  based on (16) to (18) 
5:  if (r

I 

k > I1 || r
I 

k < I2) then 
6:  if (P1< r

P 

k  <P2) &&(b1 < r
B 

k  <b2) then 
7:  continue; 
8:  else 
9:  denote I-frame as scene change; 
10:  end if 
11:  else if (r

I 

k > I3 || r
I 

k < I4) then 
12:  if (P3< r

P 

k  <P4) &&( b3 < r
B 

k  <b4) then 
13:  continue; 
14:  else 
15:  denote I-frame as scene change; 
16:  end if 
17:  end if 
18:  k++; %(move to the next GOP) 
19:  end while 

 

If the ratio of the I-frame sizes r
I 

k is within a specific range 

(cf. parameters I1 and I2 in the algorithm), then the criteria for 



the similarity between P/B-frames are more relaxed. 

Otherwise, a stricter set of thresholds is used [16]. 

D. ITU-T Rec. P.1202.1 

The calculation of the compression quality score QV in Rec. 

P.1202.1 [17] is made by combining a set of compression 

quality related parameters. Thus the objective quality measure 

is based on extracted video coding dependent parameters as 

denoted in (20). 
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The quantization parameter (QP) is a good first indication of 

the compression quality as it determines the amount of 

quantization to be applied on the transform coefficients of the 

video bitstream. The frame level quantization parameter QPpic 

is computed by averaging the macroblock level QP. QPpic 

together with intraflicker and frame rate fr forms the 

comprehensive parameter QP_frameimpact as in (22). The intra-

picture flicker algorithm determines a measure of QP for each 

picture in the received video bitstream and identifies a quality 

defect when an abrupt change in the quantization parameter 

occurs. Estimated key frame rate kfr is calculated as the frame 

rate of the sequence divided by the number of pictures between 

two intra pictures; its impact on compression quality is 

formulized in (21). 

Additional parameter used is coding complexity indicator 

cpxendoder and sequence motion indicator motionimpact. The 

former is leveled indicator of the number of used reference 

pictures and the existence of various macroblock partition sizes 

in H.264 codec, more precisely the existence of inter 8x4 

partitions, inter 4x8 partitions and inter 4x4 partitions. The 

latter is computed with the avgMVpic which is the product of 

absolute vertical and horizontal motion vectors per macroblock 

averaged over all frames in the sequence as stated in (23). 
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E. ITU-T Rec. P.1202.2 Model 1 

Rec. P.1202.1 consists of one model and Rec. P.1202.2 

consists of two models: model 1 and model 2, which both are 

no-reference models [18]. Mode 1 refers to a parsing mode; the 

model operates by analyzing information in the video bitstream 

without fully decoding the bitstream (i.e., no pixel information 

is used) for MOS estimation. Mode 2 refers to a full decoding 

mode, in addition to the bitstream information which mode 1 

uses, it can also decode parts or all of the video bitstream (i.e., 

pixel information is used) for MOS estimation.  

The formula to calculate compression quality is presents as 

(25), it combines the influence of video level QPvideo and video 

content complexity. QPvideo is the average value of all slice level 

QP of the sequence. 
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The slice content complexity sliceCpxk is calculated according 

to its correctly decoded quantization parameter sliceQPk and 

bytes per pixel sliceByteppk as below: 
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The slice level content complexity is averaged first over all the 

slices and then over all the error free intra frames to aggregate  

video level content complexity. 

 

F. ITU-T Rec. P.1202.2 Model 2 

In Rec. P.1202.2 model 2 [18], the estimated levels of 

distortion for different artifact types are aligned to the same 

scales as the subjective MOS in (29) and the impact of 

compression artifacts on video quality is present as (30). Video 

level features are effective in estimating the uniform 

impairments caused by lossy compression. The contributors 

use content unpredictability (CU) to quantify the content 

complexity. A MB’s CU is defined as the variance of the 

prediction residuals in the luminance channel. Clip-wise CU, 

CUvideo, is the weighted average of MB-wise CUs over all 

correctly parsed MBs of the video clip in H.264 codec as shown 

in (31) [12]. Here, I, P, B represents I-picture, P-picture, B- 

picture, respectively, r denotes the rth MB in certain picture. 

Clip-wise parameter QPvideo is acquired as the same manner of 

CUvideo in (32). 
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Generally, Huma Visual System (HVS) are more likely to 

tolerate visual distortions in complex scenes which is 

commonly known as the texture masking effect. Thus the 

proposed method could evaluate the compression quality with 

such consideration. 

G. ITU-T Rec. J.343.1 

The model in this recommendation measures the visual 

effect of spatial and temporal degradations as the result of 

video coding. The estimation of coding quality is based mainly 

on complexity and motion statistics – derived from the video 

frames – and on the total frame-size per scene – derived partly 

from the packet headers of the bitstream [7]. Equation (33) 

presents the estimate of visual quality on the 1 to 5 MOS value. 

Quality distortion of compression is first estimated over scenes 

of the video as Qcod_s and then average over the sequence to 

obtain Qcodvideo. 

 

4 1videoQV Qcod                                 (33) 
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bit_s denotes the total bits of certain scene and the duration_s 

is the lasting time in seconds of current scene. The complexity 

statistic of frames in current scene cmp_s is computed as local 

inter-frame and intra-frame dissimilarity of frame i and i-1 

using Algorithm 1 as shown below. 

    1 21- 1 _ __ -v c c p s cpx ss                (35) 
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The parameter fracMotion_s represents the moving fraction 

of local regions in one frame and confMotion_s is the 

confidence in motion estimation. The main idea to compute the 

complexity and motion features is to observe 3x3 blocks of the 

video frame, calculate the similarity of spatially and temporally 

adjacent blocks as well as the predictability of a block, by 

blocks of the previous frame at the same spatially adjacent 

locations. Algorithm 1 and 2 provide details of the motion 

estimation and complexity computing as shown blow. 

 

Algorithm 1 Algorithm for computing local intra-frame 

complexity 

1:  set Y0,Y1 to consecutive frames, choose 40x40 equally 

spaced points in the frame (ignoring a border of 4 to 

avoid border problems) and compute at each position 

(i, j): 

2:  
S[i, j] =
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3:  where a denotes the 3x3 block around (i, j) in Y0 

4:  where b denotes the 3x3 block around (i, j) in Y1  

5:  if (S[i, j] >=1) 

6:       count++ 

7:  end if 

8:  
compute _

S. S.

count
prob eq

height width



  

9:  compute _ 1 mean(S)cmp s     

 

        
Algorithm 2 Algorithm for motion estimation per frame 

1:  set Y0,Y1 to consecutive frames 

2:  set dxdy the array containing displacement vectors (dx, 

dy) which indicate four quadrants in counter clockwise 

direction 

3:  denote a,b   as the inner product of a and b 

4:  for ( i=2; i<=Y0.width - 2; i++) 

5:     for ( j=2; j<=Y0.height - 2; j++) 

6:         denote a as the 3x3 block around (i, j) in Y0 

7:         denote b as the 3x3 block around (i, j) in Y1 

8:  compute d_ab =b - a  

9:  compute msqd as mean of d_ab* d_ab 

10:          if ( msqd > 0.1) 

11:          set mark(i, j) =1, indicate (i, j) as motion 

computed 

12:               for (m=0; m < length of dxdy; m++) 

13:                  denote a_s as the shifted vision of a 

among(dxm, dym)  

14:                  denote b_s as the shifted vision of b 

among(dxm+1, dym+1) 

15:  compute d_s= a_s - a , d_t= b_s - a 

r = _ , _d ab d s  |  

16:  compute s = _ , _d ab d t  

17:                  compute err = r*d_s + s*d_t - d_ab 

18:  
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19:  end for 
20:  else  set mark(i, j) =0 

21:  end if 



22:  
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23:  while ( mark(i, j) > 0.5)  do 

24:              compute ( , )mp i j based on (38), find the 

max( ( , ))mp i j  over all quadrants 

25:          end while 

26:           confMotion is computed as the mean of all  

max( ( , ))mp i j  

27:  end for 

28:  end for 

  
The estimated motion vector Dx, Dy is given by (37). 

Furthermore, the confidence value p is given by (38). 

 

    i,j i,j

m

m m m m m+1p_dist i, j r dxdy +Dx ,  s dD = xdyy     (37) 

 

      m m mp i, j = p_dist i, j , log p_dist i, j         (38) 

 

Scene detection technique has been utilized in Rec. J.343.1 

to better capture the content complexity as well as the motion 

feature of the sequence. The method decomposing the video 

clip into scenes is illustrated in Algorithm 3. The scene 

detection is conducted on the deepest 2x2 down-sampled 

version of the current frame with the down-sample depth 

controlled by a pre-defined parameter. Then k x k tiles are 

extracted out of the frame sequence to compute histograms 

over each tile. The detail of mapping the frame sequence to 

the timeline can be found in the standard [7]. 

 

Algorithm 3 Algorithm for scene change detection 

1:  for (i = 1; i < total number of frames; i++)  

2:     for (j = 1; j < min(i,window); j++) 

3:        cut k x k tiles out of the frame i and frame i - j 

4:        compute matrix H0 for frame i, H1 for frame i - j 

containing histograms of all the tiles in both  

frames 

5:  for (m = 1; m < k; m++) 

6:             for (n = 1; n < k; n++) 

7:              tile_dissimilarity= 

     2

0 1mean H , H ,m n m n    

8:  end for 

9:  end for 

10:  scene_statistic(i) = median(tile_dissimilarity)  

11:  end for 

12:  end for 

13:  find the nearest frame q prior to current frame p within 

the pre-defined minimum scene time duration. 

14:  compute s = median(scene_statistic(q : p)) 

15:  for (i = q ; i < p; i++) 

16:         if (scene_statistic(i) > s ⋅ T1)  

&& (scene_statistic(i) > T2) 

17:  scene start detected 

18:  end if 

19:  end for 

 

III. COMPARISON AND DISCUSSION  

The models introduced in section II have all been formally 

standardized and the models’ performance have been validated 

separately as shown in Table I with the PC (Pearson 

Correlation), the RMSE (Root Mean Square Error) indicators. 

 
TABLE   I 

MODELS PERFORMANCE OF CODING DISTORTION 

 

 PC RMSE samples 

G.1070 0.955 — — 

P.1201.1 0.830 0.535 1430 

P.1201.2 0.902 0.461 6138 

P.1202.1 0.918 0.391(0.284) 982 

P.1202.2 

Model 1 

0.938 0.357(0.325) 3069 

P.1202.2 

Model 2 

0.940 0.353(0.337) 3069 

J.343.1 0.795 0.595 — 

 

Rec. G.1070 is verified on 4 databases for MPEG-4 and H.264 

codec. Rec. J343.1 is verified on 10 databases of various 

resolutions with H.264 codec. The validation set of J.343.1 

contains the most affluent category of artifacts among all 

mentioned standards including compression and transmission 

ones, thus the overall PC value is relatively low compared to 

others because of the difficulty in measuring such a rich set of 

artifacts. Only Rec. P.1202 series has provided the statistics 

considering only compression conditions (marked with 

parentheses in Table I) besides the overall model performance. 

Note that the evaluation of different models is not directly 

comparable because of non-uniform testing databases. Table II 

provides a comprehensive summary of the models.  

As shown from model details in section II and Table II, for 

PLM methods, the complexity is relatively low and the input 

parameters are easily available from the packet layer in the 

network even with encrypted payloads, but at the cost of 

lacking accuracy to specific scenarios. The BLM methods are 

generally moderate in complexity and their accuracy 

significantly depends on the level of access to the bitstream. 

Moreover the estimation of content complexity and the 

decomposition of sequence into scenes have positive impacts 

on the overall model performance. The demerit mainly is the 

unsuitability to services with encrypted payloads. HM method 

is a combination of the previous two methods, thus has a better 

capability tackling deferent service scenarios. The computing 

complexity of HM method is comparatively high. 

IV. FUTURE WORK 

Based on the previous analysis, bitrate, frame rate, content 

complexity estimation and motion estimation are all relevant to 

provide a satisfied coding quality evaluation for a given video 

sequence. The scene detection technique has been proved to 



improve the overall model performance and strengthen the 

model robustness to various service scenarios.  

However, the validation of standardized model concerning 

coding distortion is designed and tested with no more advanced 

codec than H.264/AVC. ITU-T Study Group 9 has initialized 

drafting the recommendation Objective perceptual video 

quality measurement methods for H.265, while ITU-T Study 

Group 12 has begun the program G.OM_HEVC, namely 

Opinion model for network planning of HEVC media streaming 

quality, both are still under prudent study. Thus it is a necessity 

to first adjust and evaluate all the previously introduced models 

with uniformed HEVC/H.265 database containing video clips 

transmitted over real-application networks of various 

resolutions and contents, and then provide a comprehensive 

HEVC/H.265 parametric model to predict coding QoE from 

the end users’ perspective. 

According to the results, a more general model evaluating 

HEVC/H.265 coding distortions may derive from Rec. 

P.1202.2 and Rec. J343.1 especially for HD and upper 

resolutions. The proliferation of UHD video content and virtual  

reality applications generates an acute demand for objective 

quality assessment of networked videos for system design, 

QoE planning, and quality benchmarking and monitoring. 

V. CONCLUSIONS  

We present in this work a review and analysis of up-to-now 

ITU-T no reference video quality evaluation models 

concerning coding distortions. Detailed analysis of core 

algorithms and calculation steps of different models are 

illustrated. From the results obtained, trading-off between the 

model performance and computational complexity is crucial to 

the applicability of the proposed models. The combination of 

packet level method and bitstream method, namely model 2 in 

Rec. P.1202.2 and J.343.1, represents the direction of quality 

evaluation of more advanced video codecs and more 

challenging service scenarios. 
 

 
 

 

TABLE   II 

MODELS COMPARISON 
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