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An Optimized Pixel-Wise Weighting Approach for
Patch-Based Image Denoising

Jianzhou Feng*, Li Song, Xiaoming Huo, Xiaokang Yang, and Wenjun Zhang

Abstract—Most existing patch-based image denoising algo-
rithms filter overlapping image patches and aggregate multiple
estimates for the same pixel via weighting. Current weighting
approaches always assume the restored estimates as independent
random variables, which is inconsistent with the reality. In
this paper, we analyze the correlation among the estimates and
propose a bias-variance model to estimate the Mean Squared
Error (MSE) under various weights. The new model exploits
the overlapping information of the patches; it then utilizes the
optimization to try to minimize the estimated MSE. Under
this model, we propose a new weighting approach based on
Quadratic Programming (QP), which can be embedded into
various denoising algorithms. Experimental results show that the
Peak Signal to Noise Ratio (PSNR) of algorithms like K-SVD
and EPLL can be improved by around 0.1dB under a range of
noise levels. This improvement is promising, since it is gained
independent to which image model is used, especially when the
gain from designing new image models becomes less and less.

Index Terms—Image denoising, K-SVD, EPLL.

EDICS Category: IMD-ANAL

I. INTRODUCTION

Image denoising is one of the most classical image pro-
cessing problems; it aims to restore an image under random
additive white Gaussian noise. Many state-of-the-art image
denoising algorithms are based on image patches [1], [2],
[3], [4], [5], [6], [7], [8], [9]. Their denoising methods can
be interpreted as an iteration of a so-called Filtering and
Weighting (F&W) process. Under the F&W process, local
image patches are firstly restored through filtering, and then
multiple estimates of the same pixel from overlapping restored
patches are weighted to derive the final estimate. For the
filtering method, sophisticated patch-based image models have
been applied to generate the filters, e.g., the sparse coding
model [1], [3], [5], [6], [9], the Gaussian Mixture Model [7],
[8], and the non-local similarity model [2], [4]. In contrast, the
weighting methods are still somewhat straightforward, either
using simple averaging or deriving the weight independently
based on certain transform coefficients of the corresponding
image patch itself [2], [4], [9]. This form of weighting method
is optimal when the estimates for weighting are independent
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random variables. However, the estimates can be heavily
correlated due to overlapping of the patches, which violates
the assumption of independence. Therefore, we may further
improve the denoising performance by analyzing the correla-
tion among the estimates using the overlapping information.

Based on the above idea, in Section II, we describe the F&W
process precisely, analyze the Mean Squared Error (MSE)
under various weights, and derive a bias-variance model to
estimate it accurately. We also show that optimizing the weight
under the proposed model yields the minimum MSE with the
help of the overlapping information. In Section III, we propose
a new weighting approach to solve the optimization problem
under the bias-variance model via Quadratic Programming
(QP). In Section IV, we introduce the proposed weighting
approach into the K-SVD algorithm and the EPLL algorithm.
It indicates that the Peak Signal to Noise Ratio (PSNR) of
both algorithms can be improved by around 0.1dB under a
range of noise levels. Finally, Section V concludes the paper.

II. THE BIAS-VARIANCE MODEL

In this section, we first formulate the degradation model of
image denoising and describe the F&W process in an analytic
way. Then we propose a bias-variance model to characterize
the correlation of the restored estimates under the F&W
process. The new model can estimate the MSE under various
weights “faithfully” by exploiting the overlapping information
of the restored patches. Therefore, optimizing the weight under
this model is nearly equivalent to minimizing the real MSE.

A. The Degradation Model and the F&W Process

The degradation model of image denoising can be formu-
lated as

y = x + n, (1)

where x denote the (vectorized) clean image, y is its noisy
version, and n represents the additive white Gaussian noise
with variance σ2.

Under the above notations, one can represent the F&W
process for each pixel i as:

(1) Filtering within local regions: Suppose there are mi

local regions (also known as patches) that share pixel i. In
the k-th region, xi is estimated as

x̂i,k = pT
i,ky + ci,k, (2)

where (pi,k, ci,k) can be seen as a low-pass global filter.
Various denoising algorithms compute (pi,k, ci,k) in their own
way, but the values are just slightly different. For example,
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Fig. 1. Two examples of x and pi,k . In the image of x (the left one), the red point indicates pixel i and the blue block represents the k-th local region. In
the image of pi,k (the right one), the lighter the pixel, the larger the corresponding element in pi,k .

in EPLL [7], suppose pixel i is at the l-th place of the k-
th (vectorized) local region Ri,ky, where Ri,k is a selection
matrix, then the patch is Wiener filtered to be

(Σ + σ2I)−1(ΣRi,ky + σ2µ), (3)

where Σ and µ are the parameter of a Gaussian distribution.
In this case, pi,k equals to the l-th column of(

(Σ + σ2I)−1ΣRi,k

)T
, (4)

and ci,k equals to the l-th element of σ2(Σ + σ2I)−1µ.
Due to the property of Ri,k, pi,k is a sparse vector with

non-zero elements only in the k-th local region, and its j-th
element reflects the closeness between xi and xj . As illustrated
in Fig. 1, the i-th element of pi,k is always the largest, and if
the local region in x contains two smooth areas like in Fig. 1
(b), the j-th element of pi,k is close to 0 when pixel j is in
the other area; ci,k is a bias term of the filter.

(2) Weighting throughout local regions: The mi estimates
are weighted to derive the final estimate of xi as

x̂i =

mi∑
k=1

wikx̂i,k, (5)

where the weights wik’s are nonnegative and sums to one.
Denote Pi = (pi,1, · · · ,pi,mi), ci = (ci1, · · · , cimi)

T and
wi = (wi1, · · · , wimi)

T , we have

x̂i = wT
i

(
PT

i y + ci
)
. (6)

All the denoising algorithms in [1], [2], [3], [4], [5], [6],
[7], [8], [9] fit the F&W process quite well. As for the
Non-local Means algorithm [10], though it can be seem as
a weighting algorithm without filtering, the weights actually
reflect the closeness among pixels, which is mainly what pi,k’s
do under the F&W process. Hence, NLM is more proper to be
interpreted as a global filtering process with only one estimate
for each pixel.

B. Two components in MSE

Under the F&W process, we assume (Pi, ci) in (6) is
computed exactly using the original filtering method of a

denoising algorithm. Therefore, x̂i is formulated as a function
of wi, and MSE(x̂) is formulated as

MSE(x̂(w)) =
1

M
(x̂i(wi)− xi)2

=
1

M

(
wT

i

(
PT

i x + ci
)
− xi + wT

i PT
i n
)2
,

(7)

where M is the number of pixels in x and w is denoted as
the concatenation of all wi’s.

Since MSE(x̂(w)) is a random variable depend on noise n,
we propose a bias-variance model, which estimates it by its
expectation under n. For mathematical derivation simplicity,
we assume that (Pi, ci)’s are independent to n. Hence, the
expectation can be estimated as

Ê [MSE(x̂(w))] =
1

M

M∑
i=1

(
Bias2(x̂i(wi)) + Var(x̂i(wi))

)
,

(8)
where

Bias(x̂i(wi)) = E[x̂i(wi)]− xi = wT
i (PT

i x + ci)− xi, (9)

is the bias of x̂i(wi) to xi, and

Var(x̂i(wi)) = V[x̂i(wi)] = σ2wT
i PT

i Piwi (10)

is the variance.
In reality, (Pi, ci)’s are derived from y, which makes them

still correlated to n, i.e., the assumption that leads to (8)
may be violated. To evaluate the appropriateness of using
Ê [MSE(x̂(w))] to approximate MSE(x̂(w)), we compute
their ratio

r(w) = Ê [MSE(x̂(w))] /MSE(x̂(w)) (11)

under various w’s. If r(w) is a constant under all w’s, then we
can conclude that optimizing (8) is equivalent to minimizing
the true value of MSE(x̂(w)). Experimental results done on
several standard images under three representative denoising
algorithms, K-SVD [1], EPLL [7], and BM3D [2] validate this
guess. As shown in Table I, under each image and denoising
algorithm combination, the values of r(w) under an averaging
w and a uniformly sampled w are really close. We only list
these two values for illustration due to space limitation, the
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TABLE I
r(w) UNDER (IMAGE, DENOISING ALGORITHM) COMBINATIONS. IN EACH

COMBINATION, THE LEFT ONE USE AVERAGING w AND THE RIGHT ONE
USE A UNIFORMLY SAMPLED w.

Image \ Alg. K-SVD EPLL BM3D
Lena 0.99 0.98 0.87 0.87 0.96 0.96

Barbara 0.99 0.99 0.93 0.93 0.85 0.85
House 0.99 0.98 0.89 0.89 0.90 0.90

Peppers 0.97 0.97 0.90 0.90 0.88 0.88

value of r(w) under other w’s are also quite close to the
presented ones. Therefore, we denote the objective function
as

f(w) = M · Ê [MSE(x̂(w))] =

M∑
i=1

wT
i

(
Qi + σ2PT

i Pi

)
wi,

(12)
where

Qi = (xi1−PT
i x− ci)(xi1−PT

i x− ci)
T . (13)

In current weighting approaches, (x̂i,k − xi)’s, for 1 ≤
k ≤ mi, are assumed to be independent random variables
with zero means, so that their covariance matrix is assumed
to be a diagonal matrix. Among them, the most promising
one computes the weight as the inverse of the sparsity of the
transform coefficients [2], [9]. Though it has been validated
under a shift-invariant DCT transform based denoising algo-
rithm [9], experimental results show that the same weighting
method doesn’t work for K-SVD and EPLL, which use simple
averaging originally. The reason is: on one side, in [9], some
estimates are not so good when the block DCT basis can not
represent the patches sparsely, so that the weighting strategy
performs well by giving such estimates small weights; on the
other side, in K-SVD and EPLL, all the estimates are compa-
rable since the transform is more adaptive and always yields
sparse representations, which makes this strategy ineffective.

While under the bias-variance model, there is no inde-
pendence assumption, and the covariance matrix is derived
analytically as

Covi = Qi + σ2PT
i Pi (14)

as shown in (12). Such Covi is superior than any diago-
nal matrix because it retain the overlapping information of
different local regions by computing PT

i Pi. It is easy to
see that each element of PT

i Pi is a inner product of two
pi,k’s. As mentioned in Section II-A, pi,k has zero elements
outside local region k and the value of its nonzero elements is
mostly dependent on how close is the corresponding xj to xi.
Therefore, the inner product of pi,k1

and pi,k2
can be seen as

the total squared closeness to xi of the overlapped pixels in
local region k1 and k2.

III. THE QP BASED WEIGHTING APPROACH

In this section, we propose a Quadratic Programming (QP)
based weighting approach for optimizing f(w). This ap-
proach contains two profiles. In Section III-A, we propose
the “approximation” profile, which optimizes f(w) with an
approximation matrix Q̂i. In Section III-B, we propose the

“practical” profile, which computes the optimal weight as a
linear combination of two weights, each minimizes the bias
and the variance component separately, with a practically
derived combination coefficient.

A. The Approximation Profile

There is unknown pixel values x contained in Qi. Hence,
before optimizing f(w), we need to approximate Qi first
based on y and (Pi, ci)’s. For simplicity, like previous weight-
ing methods assume Covi as a diagonal matrix, we assume Qi

here as a diagonal matrix Q̂i, while still retain the overlapping
information of patches in PT

i Pi. The k-th diagonal entry of
Qi is

(Qi)kk = (xi − pT
i,kx− ci,k)2. (15)

We approximate it as

(Q̂i)kk =
(
x̄i − pT

i,ky − ci,k
)2

+ ε, (16)

where

x̄i =
1

mi

mi∑
k=1

x̂i,k =
1T (PT

i y + ci)

mi
(17)

is the mean of all the x̂i,k’s and ε is a small parameter to
ensure the entry to be positive.

Under this approximation, the optimal weight is

w∗ = arg min
w

M∑
i=1

wT
i

(
Q̂i + σ2PT

i Pi

)
wi,

subject to wi ≥ 0, 1Twi = 1, for i = 1, · · · ,M.

(18)

It is easy to see that each wi can be solved independently via
QP. We also note that using the Lagrangian multiplier method
based on 1Twi = 1 may lead to negative elements in wi,
which means constraint wi ≥ 0 is non-trivial.

B. The Practical Profile

The approximation profile can be interpreted under a more
general linear combination framework. We can see that w∗ in
(18) can be approximated by

w(λ) = (1− λ)u + λv, (19)

with a certain λ ∈ [0, 1], where

u = arg min
w

M∑
i=1

wT
i Q̂iwi (20)

and

v = arg min
w

M∑
i=1

wT
i PT

i Piwi (21)

under the same constraints as in (18).
In the practical profile, we compute the optimal weight as

w(λ∗), where λ∗ ∈ R is a practically learned real scalar
that yields the minimum averaged MSE on a training image
set. When Q̂i is a good approximation of Qi, λ∗ would be
within [0, 1] so that both profiles can improve the denoising
performance. Otherwise, λ∗ may be negative and only the
practical profile performs well under this case.
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Fig. 2. The PSNR gain by using w(λ) under σ = 50 for K-SVD. Each
curve represent one training image and the circle indicates the position of the
optimal λ∗ that leads to the maximum gain for that image.

In practice, we find that Q̂i’s are quite likely to be a
positive scalar times the identity matrix, which makes u to be
the averaging weight. Thus we modify u to be the original
weight of a certain denoising algorithm. This reduces the
computational cost of solving (20) and makes the original
algorithm as a special case under the practical profile by setting
λ∗ = 0.

IV. NUMERICAL EXPERIMENTS

In this section, we test the proposed weighting approach un-
der three representative denoising algorithms: K-SVD, EPLL,
and BM3D. Due to space limitation, we list the experimental
results done on frequently used standard images in image
denoising domain here, and list the other supportive results
on our webpage.

For the K-SVD algorithm, we find the denoising perfor-
mance can be improved most significantly under high noise
levels using the practical profile with negative λ∗’s. For each
noise level, λ∗ is pre-learned from a training set with three
standard images. Taking σ = 50 as an example, as shown in
Fig. 2, we compute the PSNR gain of using w(λ) for λ ∈ R,
and find that λ∗ = −0.25 can lead to almost the maximum
PSNR gain for any of the training images. Therefore, we set
λ∗ = −0.25 under σ = 50 to denoise all the images. After
the training process, we apply the practical profile to the other
8 standard images under σ from 30 to 50, and compare the
PSNR with the original K-SVD algorithm. As shown in Table
II, the averaged PSNR gain increases from about 0.1dB to
0.2dB as σ increases.

For the EPLL algorithm, we apply the proposed weighting
approach for multiple times since it is an iterative algorithm.
We find both of the two profiles are effective for moderate
noise levels, while the approximation profile performs even
better. Therefore, we choose the approximation profile to
improve the EPLL algorithm. As shown in Table III, for noise
level from σ = 5 to σ = 20, the averaged PSNR gain can
reach around 0.1dB. The proposed weighting approach is not
effective for high noise levels probably because: It is designed
to minimize the MSE under only one F&W process. When it
is used for multiple times, minimizing the MSE within each
iteration may not be the optimal. As the noise level increases,

TABLE II
PSNR COMPARISON UNDER K-SVD. UNDER EACH NOISE LEVEL, THE
LEFT COLUMN USES THE ORIGINAL WEIGHT, THE RIGHT COLUMN USES

WEIGHT OF THE PRACTICAL PROFILE.

Image \σ 30 40 50
Peppers 28.82 28.95 27.31 27.51 26.12 26.36
Straw 24.66 24.83 22.85 23.07 21.53 21.73
Lena 30.41 30.53 28.94 29.10 27.74 27.88

Barbara 28.52 28.70 26.83 27.07 25.39 25.62
Boat 28.41 28.52 27.03 27.16 25.90 26.06
Man 28.23 28.34 27.06 27.19 26.07 26.21
Hill 28.45 28.55 27.11 27.24 26.29 26.39

Fingerprint 26.29 26.40 24.71 24.87 23.23 23.52
Average 27.97 28.10 26.48 26.65 25.28 25.47

TABLE III
PSNR COMPARISON UNDER EPLL. UNDER EACH NOISE LEVEL, THE LEFT
COLUMN USES THE ORIGINAL WEIGHT, THE RIGHT COLUMN USES WEIGHT

OF THE APPROXIMATION PROFILE.

Image \σ 5 10 20
Cameraman 38.18 38.32 34.01 34.12 30.36 30.44

House 39.11 39.19 35.77 35.82 33.16 33.30
Monarch 38.40 38.63 34.35 34.50 30.58 30.73
Peppers 38.03 38.12 34.54 34.65 31.24 31.35
Straw 35.53 35.65 30.89 31.01 27.04 27.16
Lena 38.69 38.73 35.60 35.67 32.70 32.79

Barbara 37.71 37.79 33.63 33.72 29.80 29.87
Boat 36.91 36.86 33.66 33.74 30.71 30.77

Fingerprint 36.60 36.70 32.18 32.29 28.38 28.48
Hill 37.11 37.08 33.45 33.50 30.42 30.46
Man 37.82 37.90 33.96 34.04 30.61 30.66

Average 37.64 37.73 33.82 33.91 30.45 30.55

the number of iteration also increases, which enlarges the
impact of the misleading objective.

For the BM3D algorithm, we find the PSNR improvement
by using the proposed weighting approach is insignificant,
no matter which profile is used. This is probably because
BM3D has much more estimates for the same pixel compare
to K-SVD and EPLL, and their correlation is also more com-
plicated, which makes approximating the hidden covariance
matrix Covi in (14) accurately very hard. Therefore, we need
to design more sophisticated profiles for BM3D in the future.

V. CONCLUSION

In this paper, we propose a bias-variance model to estimate
the MSE accurately by analyzing the correlation among the
estimates. We then propose a new weighting approach that
contains two profiles using QP. The proposed weighting ap-
proach optimize the weights by preserving the overlapping
information of restored patches. Experimental results show
that the PSNR gain of K-SVD and EPLL can be improved
by about 0.1dB under a range of noise levels. The 0.1dB
improvement is promising, since it is independent to which
image model is used, especially when the gain from designing
new image models becomes less and less.

This work setup a novel bias-variance model that formulates
the selection of weights as an optimization problem. The pro-
posed two profiles for solving this optimization problem can
be seen as a stepping stone, and better profiling methodology
may be proposed with more sophisticated techniques.
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