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ABSTRACT 

The emerging HEVC standard supports up to 12 variable 
block sizes ranging from 4x8/8x4 to 64x64 to conduct 
motion estimation (ME) and motion compensation (MC). 
This feature contributes considerable coding gain compared 
with 7 variable block sizes in H.264/A VC at the cost of 
huge computational complexity. In the test model HM, ME 
with variable block sizes (VBSME) may be called up to 425 
times for the mode decision procedure of one CTU (Coding 
Tree Unit). Obviously, VBSME becomes the bottleneck for 
real time encoding. In this paper, we focus on parallel 
realization architecture design of VBSME in HEVC. Firstly, 
an efficient parallel encoder framework is proposed for CPU 
plus GPU platform. With the framework, VBSME, 
fractional-pixel image interpolation and border padding 
processes run on GPU without burden on the host CPU. 
Secondly, for workload balance between CPU and GPU, a 
fast Prediction Unit partition mode decision algorithm is 
also proposed. Lastly, the parallel realization strategy of 
VBSME on GPU is improved for ME compression 
performance improvement. Experimental results based on 
the NVIDIA's C2050 GPU show that the speed of the 
VBSME strategy on GPU is about 113 times faster than the 
one on CPU. 

Index Terms- HEVC, Motion Estimation, GPU 

1. INTRODUCTION 

With the increasing demands of HD video and the emerging 
beyond-HD video, huge traffic is becoming a severe 
challenge for communication networks. The emerging video 
coding standard HEVC aims at providing a double 
compression performance improvement than H.264 mainly 
targeting at HD and beyond-HD resolution video. 
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The ongoing HEVC coding standard inherits the well 
known hybrid MEIMC followed by transform and entropy 
coding framework adopted by H.261 since 1994 [1, 2]. In 
recent 20 years, the hybrid framework has been extended by 
dozens of new coding options. The inter frame prediction 
coding contributes substantial compression gains because of 
the high temporal correlation in video sequences. To 
improve the inter frame prediction precision, the block size 
for ME and MC has been extended from 8x8 to a series of 
combinations of block sizes. 8x8 and 16x16 block sizes are 
permitted for ME and MC in MPEG-2. In H.264/AVC, 7 
variable block sizes ranging from 4x4 to 16x16 are 
employed. HEVC supports 12 variable block sizes ranging 
from 4x8 and 8x4 to 64x64. By enabling variable block 
sizes for ME and MC, the compression performance can be 
improved significantly, meanwhile, the encoding 
computational complexity increases dramatically. Since it is 
difficult and very complex to decide the most efficient PU 
combination for one CTU. The huge computationally 
intensive nature may prevent the HEVC from prevalent 
video communication implementations based on 
computation-limited platform. 

Nowadays, personal computers are typically equipped 
with powerful but cost-effective Graphics Processing Unit 
(GPU). To accelerate the complex VBSME process, several 
works have targeted to accelerate VBSME on the powerful 
GPU with Compute Unified Device Architecture (CUDA) 
platform. Chen et af. presented an efficient block-level 
parallel algorithm for VBSME for H.264/ A VC on CUDA 
platform in [3]. Pieters et af. described a flexible 
architecture and a task scheduling mechanism on CPU plus 
GPU system [4]. Chi-Wang Ho et af. rearranged the ME 
sequence of the 4x4 blocks in the wavefront format to 
overcome the dependency problem in the MV selection 
process [5]. 

In HEVC, the block sizes for ME and MC have been 
extended from 7 variable block sizes in H.264/AVC to 12. 
The basic coding unit has also been changed. So the 
VBSME mechanism as well as ME and MC block size 
selection are different from that of H.264/ A Vc. Therefore, 
the solutions proposed by the references can not be used 
directly for HEVC. Additionally, to the best of the authors' 



knowledge, no integral framework for parallel accelerating 
the VBSME for CPU plus GPU platform has been published. 
In this paper, we propose an efficient parallel encoding 
framework for such CPU plus GPU platform. This 
framework has the following excellent features: 1) The 
VBSME and fractional-pixel images interpolation tasks are 
allocated to the GPU and they run in parallel with mode 
decision, MC and entropy coding; 2) The MVs gotten by 
VBSME are flexibly applied to PU partition mode decision; 
3) The MVs dependency is considered in ME process on 
GPU. 

The following sections of the paper are organized as 
follows. Section 2 gives an overview of VBSME as well as 
mode decision process in HEVC. The parallel encoding 
framework on CPU plus GPU platform is provided in 
section 3. Section 4 designs the parallel realization of 
VBSME on CUDA platform. Some experimental results are 
presented in Section 5. Finally, Section 6 concludes this 
paper. 

2. OVERVIEW OF VBSME IN HEVC 

In the HEVC, one frame is divided into a series of non 
overlapped Coding Tree Unit (CTU). The size of the luma 
block in a CTU is 64x64. The basic encoding unit is called 
Coding Unit (CU). It is always square and it may take a size 
from SxS luma samples up to the size of the CTU. The 
Prediction Unit (PU) is the basic unit for carrying the 
information related to the prediction process. It is not 
restricted to being square in shape. Each CU may contain 
one or more PUs, each of which may be as large as the CU 
or as small as Sx4 or 4xS in luma block size. From the latest 
working draft 9 [1], we can get the allowed CU depth and 
PU partition structure as shown in Figl. AMP partition 
modes are not supported by the main profile. There are 4 
CU sizes from 64x64 to SxS. The total number of allowed 
PU size is 12 (from 64x64 to 4xS/Sx4), consequently, there 
may be up to 425 (5+4x5+ 16x5+64x5 = 425) times ME for 
one CTU to find the best combination of CU sizes and PU 
partItIOn modes. Obviously, VBSME becomes the 
bottleneck for real time encoding. In the following, we give 
a brief description of the mode decision procedure which 
incorporates MV searching for blocks of different sizes, CU 
depth decision and PU partition mode decision. 

The mode decision procedure can be divided into two 
stages: 1) ME and 2) CU depth and PU partition mode 
decision. In the first stage, the best MVs of each permitted 
PU are found. The criterion for selecting the best MV is the 
cost function: 

Jpred,SAD =SA(T)D + Apred * Rpred (1) 
where Rpred is the approximate rate of MV s and is obtained 
by a pre-calculated table. SAD (Sum of Absolute Difference) 
is used for integer pixel ME while SATD (Sum of absolute 
Hadamard Transformed Difference) is used for fractional 
Pixel. A = � and /L = a * � * 2CCQP-12)/30) in pred " /I.,mode JIK)de k ' 

which a is adjusted according to whether the current frame 
is used for reference. Wk represents weighting factor 
dependent on encoding configuration and QP. QP is the 
quantization parameter. 

In the second stage, the RD costs of different CU sizes 
and PU partitions are evaluated and the combination which 
has the smallest RD cost is selected. The RD cost is 
expressed as: 

Jmode =SSD + Amode * Rmode• (2) 
SSD is Sum of Square Difference between the original block 
and its reconstruction. Rmode denotes the rate required for 
representing the pu. It includes the bits required for 
signaling the coding mode and the associated side 
information, e.g. MV, reference indices as well as the bits 
required for the transform coefficient levels of the residual 
signal. 

To calculate the Jmode for each PU, reconstruction and 
entropy coding of all syntaxes are necessary. If all 254 PU 
size combinations are checked, the complexity is beyond the 
computational capability of common computers for real 
applications. 

CU PU 

��'M'M

D rn B 
Depth2 32x32 D rn B 
Depth3: 16xl6 D rn B 
Depth4:8x8 D rn El 

Fig. 1. CU size and PU partition structure 

3. CPU PLUS GPU PARALLEL ENCODING 
FRAMEWORK 

The framework of the encoder based on CPU plus GPU 
platform is diagramed in Fig. 2. The HEVC encoder is 
mainly divided into six components: VBSME, Mode 
Decision, MC, Interpolation, Encode & Reconstruction and 
Entropy coding. The VBSME and Interpolation components, 
i.e. the right part in Fig. 2, run on GPU, the others run on 
cpu. There are two loops in the parallel encoding 
framework, the CTU line loop and the frame loop as shown 
in the right part of Fig. 2. The input sequence is coded frame 
by frame in the frame loop. One frame is divided into a 
series of non-overlapped CTU lines which are coded line by 
line in the CTU line loop. The Mode Decision, VBSME, 
MC and Encode & Reconstruction components process all 
the data of one CTU line in one pass, while Entropy coding 
and Interpolation components process all the data of one 
frame in one pass. 

The components on GPU and the components on CPU 
run in parallel by two Synchronization components: Sync to 



Interpolate and Sync to Last CTU Line ME. The CPU 
launches the Interpolation task to the GPU after the CTU 
line loop fmishes one frame and copies the reconstruction 
image to the GPU global memory. When the CPU executes 
Entropy coding, the GPU runs Interpolation and boundary 
padding tasks for fractional-pixel images. When CPU 
launches a new CTU line ME task to the GPU, the 
fractional-pixel interpolation and boundary padding should 
have been fmished. It is guaranteed by Sync to Last 
Interpolate component. Before the Mode Decision for the 
CTUs in one CTU line begins, the MV information should 
have been ready. This is guaranteed by the Sync to Last 
CTU Line ME component. When CPU executes Mode 
decision, MC and Encode & Reconstruction components for 
CTUs in one CTU line, the GPU run VBSME for the next 
CTU line. Using the two Sync components, fractional-pixel 
interpolation followed by boundary padding and entropy 
coding can run in parallel. Meanwhile, the VBSME for the 
next CTU line and mode decision followed by MC and 
Encoding & Reconstruction is capable of running in parallel. 
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Fig. 2. Parallel encoding framework on CPU plus GPU platform. 

The thick lines with arrows represent the dataflow directions. 

As described in Section 2, to calculate the RD cost for 
mode decision, PU reconstruction and entropy coding of all 
syntaxes are necessary. Mode decision becomes the 
bottleneck in our parallel encoding framework. For 
workload balance between CPU and GPU, we propose a fast 
PU partition scheme to speed up mode decision. Before 
mode decision for one CTU, the MVs for PUs with 10 kinds 
of block sizes are available. The motion information can be 
flexibly employed for PU partition decision [6]. In the 
following, we describe the scheme as shown in Fig. 3. It is 
composed by the following steps. 

Step 1. The SKIP detection and the CBF _fast detection 
algorithms employed in HM are also adopted. If none of the 
SKIP and CBF jast conditions is true, proceed to step 2. 
Otherwise, set CU depth to 4 and jump to step 5. 

Step 2. If the max difference between four MV s of four 
PART_NxN PUs and MV of the PART_2Nx2N is not larger 
than 6, which means one and a half pixel distance between 
these two PU MVs, the CU is coded as PART_2Nx2N. 
Jump to step 5. Otherwise, set CU depth to 4 and proceed to 
step 3. 

Step 3. Do motion compensation for PART-2Nx2N PU 
with the MV and calculate the texture pattern of the residual 
block. To calculate the texture pattern, one 2Nx2N block is 
divided into four NxN blocks. Let Sao, Sal, SIO and SII denote 
the average intensity of each NxN block starting from left 
top and in raster scanning order. Two edge feature 
parameters: vertical edge parameter V and horizontal edge 
parameter H are introduced. 

v = l l(500 -501)+(510 -511)1

_ 
Nx(QP _s/e)() 

(3) 
L· Jrepresents the floor function. QP _step is the quantization 
step and N represents the block size of the PART_NxN. 
According to H and V, CU partition of the 2Nx2N block is 
decided as follows: 

If H==V and H!=O, which means no obvious edge, 
PART_2Nx2N is selected, and set CU depth to 4 and jump 
to step 5. 

else if H==V and H==O, which means Diagonal edges 
exist, PART_NxN is selected; 

else if H>V, which means Horizontal Dominant edges 
exist, PART_Nx2N is selected; 

else, PART_2NxN is selected. 
Step 4. Calculate RD cost Jmode as equation (4). 

Compare and select the smallest one. 
Step 5. Check if the current CU depth is 4 and all the 

four NxN blocks have been processed. If the condition is 
true, proceed to step 6. Otherwise, jump to step 1. 

Step 6. Mode decision for the CTU ends. 

Me 

Fig. 3. The schematic of the fast PU partition algorithm 

4. PARALLEL REALIZA TION OF VBSME ON CUDA 



The architecture proposed in [4] simply employs SAD as the 
criterion for MV selection. The MV dependency between 
neighboring block is neglected. It may induce RD 
performance degradation severely compared with the 
reference encoder. In our parallel encoding framework, the 
GPU executes the VBSME task for one CTU line in parallel. 
Therefore, the MV s of the top CTU line are ready when 
conducting the VBSME for the current CTU. In this section, 
the architecture proposed in [4] is improved by taking the 
MV dependency for MY selection into account. The 
flowchart of the improved VBSME on CUDA is shown in 
Fig. 4. The procedures of the improved architecture are 
composed of the following steps. 
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Fig. 4. Flowchart of the improved VBSME 
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Fig. 5. Variable block size SAD Generation 

Step 1. 8x8 block size SADs are calculated for all MV 
candidates; 

Step 2. Variable block size SADs are generated by 
summing up the corresponding 8x8 block SADs as 
diagramed in Fig.S; 

Step 3. MYs for 16x16 block size are selected using 
Jpred as the criterion. In this step, we divide one CTU line 
into four 16x16 block lines. The SAD comparison in MV 

selection for each 16x16 line is done sequentially. The Jpred 
is specified by the following formula. 

Jpred =SAD + 2 * DMV = SAD + 2*(MV_C - PMV) (4) 
where MV_ C represents one of the MY candidates. P MV is 
the predicted MY which is calculated as shown in Fig. 6. As 
the MVs of the top CTU line are now available, the MYO, 
MVI and MV2 of the top 16x16 PUs as well as the MV3 
and MV4 of the last frame PUs are employed for MV 
prediction. 

Step 4. The Jpred for all the other variable block sizes 
are calculated as the procedure for 16x 16 size. In our 
architecture, the MV s gotten by 16x 16 PU size in step 3 are 
employed for all variable block size MV predictions. 

Step 5. Integer pixel Jpred comparison to get IMYs for 
all variable block sizes. 

Step 6. Fractional pixel MV refinement. 
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Fig. 6. MVP prediction schematic 

5. EXPERIMENTAL RESULTS 

The workstation Z620 produced by Hewlett-Packard is 
selected as the CPU plus GPU platform. It contains one 
NVIDIA Tesla C20S0 GPU. The Operating System is 64bit 
Windows7. There are 448 CUDA cores at clock rate 1.1SG 
Hz. The CUDA driver version of the GPU is S.O and the 
CUDA Capability version number is 2.0. Some preliminary 
experimental results of the parallel realization of VBSME 
on CUDA and the parallel encoder are presented. 

Firstly, we evaluate the acceleration performance of the 
improved VBSME on GPu. 

The improved VBSME runs on one CPU core and GPU, 
in parallel and serially, respectively, for acceleration 
performance comparison. The search range is 64x64 with 
the full search strategy for IMV and 24 fractional-pixel 
positions around the IMY. Two test sequences with different 
resolutions BasketballDrive 1920x1080 _50 and 
Trafficj560x1600_crop are tested. The results are 
tabulated in Table I. For the 2S60x1600 resolution sequence, 
the GPU version of VBSME achieves 23.77 fps, while the 
single CPU thread version only process 0.21 fps. The speed
up ratio is about 113 times. The same acceleration 
performance is obtained for the 1920x1080 resolution 
sequence. The ME time is picture independent due to full 
search. 



The compression performance as well as the speed 
acceleration performance of our parallel encoder is 
compared with the anchor HM9.0 encoder [8]. The parallel 
encoding framework is transplanted into the latest x265 
encoder, a first open source encoder implementation of 
HEVC [9]. We call the x265 encoder with the parallel 
framework as the proposed encoder. The main 
configurations are: 1) the first 50 frames are encoded, one I 
frame followed by 49 P frames; 2) AMP is off; 3) SAO is 
off; 4) PCM mode is disabled; 5) TU size is set as the PU 
size except TU size is 32x32 for CU size larger than 32x32; 
6) search range is 64x64; 7) EPZS fast search is enabled for 
the HM encoder while full search for the proposed encoder; 
8) Rate control is disabled, six QPs 22, 24, 26, 28, 31 and 34 
are tested; 9) input sequences are BasketballDrive 
_1920xI080_50.yuv and Cactus_1920x l080_50.yuv. 

T bl I S d a e . spee UP gams on different video sequences 

sequence CPU(fps) GPU(fps) Speedup 
ratio 

Traffic 2560x 0.21 23.77 113.2 -

1600 crop 
ParkScreen 1 0.69 77.76 112.7 920xl080 24 

The RD curves by the HM encoder and the proposed 
encoder are shown in Fig. 7. From these RD curves, we see 
that the RD performance degradation of the proposed 
encoder with fast CU partition decision algorithm is about 
0.7 dB degradation which is calculated followed by BD
PSNR[7]. The encoding speed of the HM encoder is about 
0.03 fps while the average speed of the proposed encoder is 
14.5 fps. The acceleration by the proposed mainly from the 
program re-designed by the x265 encoder. We also conduct 
the acceleration comparison between two x265 encoders, 
one without GPU acceleration and another with GPU 
acceleration using the proposed framework. There is about 
71 times faster by the GPU parallel acceleration. The RD 
performance degradation is mainly induced by the fast CU 
partition mode decision. With the fast PU partition mode 
decision, instead of calculating four RD costs, only one RD 
cost is calculated for the CU size decision. Despite of the 
RD performance degradation, the real-time encoding speed 
makes the parallel encoder promising for practical 
applications. 

6. CONCLUSION 

In this paper, we design an efficient parallel framework of 
the HEVC encoder on CPU plus GPU platform. In the 
framework, a novel synchronization mechanism between 
CPU and GPU is proposed, a fast PU partition scheme is 
proposed and the procedure of the VBSME on GPU is 
improved. In the parallel framework encoder, motion 
estimation, fractional-pixel image interpolation and border 
padding processes run on GPU without occupying CPU 
cycles. Significant computational complexity is saved by the 

fast PU partition scheme. Experimental results show that the 
speed of the proposed VBSME strategy on GPU is about 
113 times faster than the one running on CPU platform. The 
RD performance degradation induced mainly by the fast CU 
partition scheme is about 0.7 dB. 
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