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Introduction 

Background 
Audience expects high resolution videos/images to 

enjoy high quality visual experience. Currently the 

video content providers have no many “true” 4K video 

contents. In contrast, there are a large amount of 

vides/films on the resolution of 1080p in market. Thus, 

it is desired to convert the 1080p videos to 4K videos 

offline with high quality and a reasonable running time. 

Existing SR Methods 
Quality and speed are two basic requirements for the 

video super-resolution technique. Early upscaling 

methods(e.g. bicubic, Lanczos) typically have low 

complexity and computational cost, but the quality of 

their upscaled images is relatively poor. Recent state-

of-the-art SR methods produce high quality images 

with extremely large computational cost. Existing 

GPU accelerating methods achieve significant speed-

up at the cost of degraded quality. Generally they are 

either too slow or of poor quality. 

 

HD to 4K framework 
We propose a super-resolution based HD to 4K video converting. It first 

decodes the HD video from high quality Blu-ray disc, then transfers the data 

from host memory to GPU memory and performs the GPU accelerated 

A+(Adjusted Anchored Neighborhood Regression)[1,2] super-resolution. After 

that, additional enhancement operations like denoising or color grading can be 

conducted. Finally, the 4K image clips are re-encoded into the appropriate 4K 

video format for distribution purpose. In the following parts of this poster, we 

will introduce our GPU implementation and optimizations of A+ super-

resolution, to accelerate it from 47s/frame to 0.16s/frame, which is no longer 

the bottleneck of this HD to 4K converting procedure. 
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The A+ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The prototype of our super-resolution algorithm is the A+(Adjusted 

Anchored Neighborhood Regression). The A+ not only produces the 

best quality among the state-of-the-art SR method to our knowledge, 

but also requires a moderate computational cost. It searches for the 

best match patch from the precomputed example dictionary and apply 

corresponding projection matrix to the input patch feature. The 

example dictionary and projection matrix dictionary is precomputed 

offline in training phase, so that they can be directly accessed in the 

executing phase. 

GPU Accelerating A+ 
In our work, we propose GPU implementation and optimization 

technologies to accelerate the A+. In order to get maximum ratio of 

acceleration and minimize CPU/GPU data transfer, the A+ process 

is fully parallelized. We separate A+ into many steps, parallelize 

each step and GPU implement them. We also optimize it by taking 

the advantage of GPU’s coalesced memory access mechanism, 

instruction level parallelism and CPU/GPU hybrid implementation. 

Our experiments show that the overall execution time for 1080p to 

4K upscaling is reduced from 47s/frame to 0.16s/frame, while the 

image quality is exactly the same as the original A+. 

Steps of A+ 
(1) A bicubic interpolation as the preprocessing to get the LR 

Image. 

(2) The Difference Image is generated by first order and second 

order difference of LR Image along height and width. 

(3) Difference Features and low frequency patch are collected 

(4) The LR Features is obtained by PCA (principle component 

analyzing) the Difference Feature. 

(5) The ANR (anchored neighborhood search and regression) 

step is the most critical, magical, and time consuming one, 

consisting a matrix-matrix multiply, a column-wise max search, 

and a column-wise matrix-vector multiply. 

(6) Low Frequency Patch and High Frequency Patch are added 

to generate the HR Patch 

(7) HR Patches are overlapped back to SR Image. 

All seven steps must be parallelized and GPU implemented to 

parallel A+ entirely. 



Parallelization of A+ Steps 

Basic Methods 
The 2nd (difference), 3rd (collecting feature) 

and 6th (low-high frequency patches 

addition) steps are parallelized in a similar 

way. The problem is split into thousands of 

millions of mini-tasks along width and 

height or along features. Each task of 

generating corresponding output pixel or 

corresponding output feature is assigned to 

a unique thread. Because there are no 

interdependencies between the mini-tasks, 

they can be processed independently, 

without intercommunication and executed 

in arbitrary sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

Parallelism of ANR 
It is composed of a matrix-matrix multiply, 

a feature-wise max search and a feature-

wise matrix-vector multiply. The key 

problem is split along features into mini-

tasks and assigned to threads, as shown 

in figure. In each task, a max absolute 

value and index search is performed in 

corresponding column inside the Match 

Matrix, and then the index’s projection 

matrix is multiplied to the LR Feature to 

generate the High Frequency Patch. 

 

 

 

 

 

 

 

 

 

 

 

Parallelism of overlapping 
This algorithm cannot be directly parallelized 

because there might be concurrent read/write 

operation to the same position and results in wrong 

answers.  

To deal with this problem, we handle the overlapping 

patches from the view of SR Image. To be 

concurrently solved, the problem is split along pixels 

of SR Image. A unique thread is responsible for 

generating one pixel of SR Image. It first finds the 

patches that includes the pixel, then reads and 

averages those pixel values inside corresponding SR 

Patches. The race issue is fixed by avoiding writing to 

same location. 

 

 

 

 

 

 

 

 

 

 

 



Further Optimization 
Coalesced memory 

access 
When a thread inside GPU access a 

global memory, the hardware will 

automatically combine or coalesce the 

request with other thread’s request, if 

these requests access adjacent memory 

locations. We elaborately rearrange the 

data formatting to meet the coalesced 

memory requirement. In the steps of 

bicubic, difference, collecting features, 

matrix multiply, feature addition and 

overlapping, the memory is fully 

coalesced accessed to have a speed up 

of more than 10x. In the ANR (5th step), 

the memory access to the Match Matrix is 

also fully coalesced, but we fail to speed 

up the matrix-vector multiply because the 

location of desired Projection Matrix is 

undetermined before execution. 

 

 

 

 

 

Instruction level 

parallelism 
We exploit instruction level parallelism (ILP) 

to further accelerate the feature-wise 

matrix-vector multiply. Because the access 

to Projection Matrix is uncoalesced, the 

hardware will launch a 32 bytes read 

request while only 4 bytes (one floating-

point number) of them is useful and the rest 

are discarded. To improve this situation, we 

adjust the instructions and data type inside 

the kernel. The read operations use data 

type float4 to launch read request of 16 

bytes instead of 4 bytes. 

 

 

 

 

 

 

 

CPU/GPU Hybrid 

Implementation for Video 

Processing 
We propose the CPU/GPU hybrid implementation, 

to concurrently process the Y/U/V channels. The A+ 

procedure of Y channel is assigned to GPU and 

bicubic procedures of U/V channel are assigned to 

two CPU threads. The concurrent execution can be 

achieved as the CPU procedure of bicubic is faster 

than the GPU procedure of A+. Thus the CPU/GPU 

hybrid implementation reduce the video super-

resolution execution time from 

 3* tI/O +tGPU A+ + 2tGPU bicubic  to  tI/O + tGPU A+. 

 

 

 

 

 

 

 



We conducted experiments about the execution 

time for each step processed by CPU and GPU. A 

significant speed up of 295x is achieved. The 

overall execution time is reduced to 160ms. 

 

 

 

 

 
 

All implementations, optimizations and measurements were done on a PC with dual Intel 

E5-2697v2 @2.7GHz 12 cores processers, 64GB host memory, NVIDIA GTX980TI. The 

experiment is done on a 1920x1080 to 3840x2160 single channel common image super-

resolution. The result is listed in the table. 

Correctness Verification 
We conduct additional image quality experiment to 

verify our implementation and measure the 

difference of computational accuracy between CPU 

and GPU. The correctness of our parallelism and 

codes can be verified. The GPU accelerated A+ 

achieves identical quality as the original CPU A+, 

which is far better than simple bicubic and better 

than other state-of-the-art SR methods.  

 

 

 

 

CPU(ms) GPU(ms) Speed up 

Bicubic 27 3 9 

Difference& 

Collect Feature 

8,157 8 1020 

PCA 384 15 25 

ANR 17,924 125 143 

Patches Addition 69 3 23 

Overlapping 20,654 2 10327 

Overall 47,300 160 295 

  PSNR(dB) 

CPU A+ vs GPU A+ 88.97 

Ground Truth vs CPU A+ 37.84 

Ground Truth vs GPU A+ 37.84 

Ground Truth vs Bicubic 35.37 

Conclusion 
We propose a GPU implementation on one of 

the best image super-resolution algorithm: A+. 

In our work, the A+ is divided into 7 steps, all 

of which are parallelized by GPU acceleration. 

Specifically, we optimize the code by three 

techniques: coalesced memory access, 

instruction level parallelism and CPU/GPU 

hybrid implementation. Our experiments show 

the execution time for converting a video 

frame of 1920x1080 to 3840x2160 can be 

reduced from 47.3s to 160ms, a 295x speed 

up, while the quality of GPU result is exactly 

the same as CPU result. 
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