

GPU ACCELERATING SUPER-RESOLUTION
FOR CONVERTING HD TO 4K

ZHANGZONG ZHAO1, LI SONG1, CHUANFEI LUO2, RONG XIE1, XIAOKANG YANG1, WENJUN ZHANG1

Introduction

Background
Audience expects high resolution videos/images to

enjoy high quality visual experience. Currently the

video content providers have no many “true” 4K video

contents. In contrast, there are a large amount of

vides/films on the resolution of 1080p in market. Thus,

it is desired to convert the 1080p videos to 4K videos

offline with high quality and a reasonable running time.

Existing SR Methods
Quality and speed are two basic requirements for the

video super-resolution technique. Early upscaling

methods(e.g. bicubic, Lanczos) typically have low

complexity and computational cost, but the quality of

their upscaled images is relatively poor. Recent state-

of-the-art SR methods produce high quality images

with extremely large computational cost. Existing

GPU accelerating methods achieve significant speed-

up at the cost of degraded quality. Generally they are

either too slow or of poor quality.

HD to 4K framework
We propose a super-resolution based HD to 4K video converting. It first

decodes the HD video from high quality Blu-ray disc, then transfers the data

from host memory to GPU memory and performs the GPU accelerated

A+(Adjusted Anchored Neighborhood Regression)[1,2] super-resolution. After

that, additional enhancement operations like denoising or color grading can be

conducted. Finally, the 4K image clips are re-encoded into the appropriate 4K

video format for distribution purpose. In the following parts of this poster, we

will introduce our GPU implementation and optimizations of A+ super-

resolution, to accelerate it from 47s/frame to 0.16s/frame, which is no longer

the bottleneck of this HD to 4K converting procedure.

Comparsion_Ref_Src_Our.mp4

The A+

The prototype of our super-resolution algorithm is the A+(Adjusted

Anchored Neighborhood Regression). The A+ not only produces the

best quality among the state-of-the-art SR method to our knowledge,

but also requires a moderate computational cost. It searches for the

best match patch from the precomputed example dictionary and apply

corresponding projection matrix to the input patch feature. The

example dictionary and projection matrix dictionary is precomputed

offline in training phase, so that they can be directly accessed in the

executing phase.

GPU Accelerating A+
In our work, we propose GPU implementation and optimization

technologies to accelerate the A+. In order to get maximum ratio of

acceleration and minimize CPU/GPU data transfer, the A+ process

is fully parallelized. We separate A+ into many steps, parallelize

each step and GPU implement them. We also optimize it by taking

the advantage of GPU’s coalesced memory access mechanism,

instruction level parallelism and CPU/GPU hybrid implementation.

Our experiments show that the overall execution time for 1080p to

4K upscaling is reduced from 47s/frame to 0.16s/frame, while the

image quality is exactly the same as the original A+.

Steps of A+
(1) A bicubic interpolation as the preprocessing to get the LR

Image.

(2) The Difference Image is generated by first order and second

order difference of LR Image along height and width.

(3) Difference Features and low frequency patch are collected

(4) The LR Features is obtained by PCA (principle component

analyzing) the Difference Feature.

(5) The ANR (anchored neighborhood search and regression)

step is the most critical, magical, and time consuming one,

consisting a matrix-matrix multiply, a column-wise max search,

and a column-wise matrix-vector multiply.

(6) Low Frequency Patch and High Frequency Patch are added

to generate the HR Patch

(7) HR Patches are overlapped back to SR Image.

All seven steps must be parallelized and GPU implemented to

parallel A+ entirely.

Parallelization of A+ Steps

Basic Methods
The 2nd (difference), 3rd (collecting feature)

and 6th (low-high frequency patches

addition) steps are parallelized in a similar

way. The problem is split into thousands of

millions of mini-tasks along width and

height or along features. Each task of

generating corresponding output pixel or

corresponding output feature is assigned to

a unique thread. Because there are no

interdependencies between the mini-tasks,

they can be processed independently,

without intercommunication and executed

in arbitrary sequence.

Parallelism of ANR
It is composed of a matrix-matrix multiply,

a feature-wise max search and a feature-

wise matrix-vector multiply. The key

problem is split along features into mini-

tasks and assigned to threads, as shown

in figure. In each task, a max absolute

value and index search is performed in

corresponding column inside the Match

Matrix, and then the index’s projection

matrix is multiplied to the LR Feature to

generate the High Frequency Patch.

Parallelism of overlapping
This algorithm cannot be directly parallelized

because there might be concurrent read/write

operation to the same position and results in wrong

answers.

To deal with this problem, we handle the overlapping

patches from the view of SR Image. To be

concurrently solved, the problem is split along pixels

of SR Image. A unique thread is responsible for

generating one pixel of SR Image. It first finds the

patches that includes the pixel, then reads and

averages those pixel values inside corresponding SR

Patches. The race issue is fixed by avoiding writing to

same location.

Further Optimization
Coalesced memory

access
When a thread inside GPU access a

global memory, the hardware will

automatically combine or coalesce the

request with other thread’s request, if

these requests access adjacent memory

locations. We elaborately rearrange the

data formatting to meet the coalesced

memory requirement. In the steps of

bicubic, difference, collecting features,

matrix multiply, feature addition and

overlapping, the memory is fully

coalesced accessed to have a speed up

of more than 10x. In the ANR (5th step),

the memory access to the Match Matrix is

also fully coalesced, but we fail to speed

up the matrix-vector multiply because the

location of desired Projection Matrix is

undetermined before execution.

Instruction level

parallelism
We exploit instruction level parallelism (ILP)

to further accelerate the feature-wise

matrix-vector multiply. Because the access

to Projection Matrix is uncoalesced, the

hardware will launch a 32 bytes read

request while only 4 bytes (one floating-

point number) of them is useful and the rest

are discarded. To improve this situation, we

adjust the instructions and data type inside

the kernel. The read operations use data

type float4 to launch read request of 16

bytes instead of 4 bytes.

CPU/GPU Hybrid

Implementation for Video

Processing
We propose the CPU/GPU hybrid implementation,

to concurrently process the Y/U/V channels. The A+

procedure of Y channel is assigned to GPU and

bicubic procedures of U/V channel are assigned to

two CPU threads. The concurrent execution can be

achieved as the CPU procedure of bicubic is faster

than the GPU procedure of A+. Thus the CPU/GPU

hybrid implementation reduce the video super-

resolution execution time from

 3* tI/O +tGPU A+ + 2tGPU bicubic to tI/O + tGPU A+.

We conducted experiments about the execution

time for each step processed by CPU and GPU. A

significant speed up of 295x is achieved. The

overall execution time is reduced to 160ms.

All implementations, optimizations and measurements were done on a PC with dual Intel

E5-2697v2 @2.7GHz 12 cores processers, 64GB host memory, NVIDIA GTX980TI. The

experiment is done on a 1920x1080 to 3840x2160 single channel common image super-

resolution. The result is listed in the table.

Correctness Verification
We conduct additional image quality experiment to

verify our implementation and measure the

difference of computational accuracy between CPU

and GPU. The correctness of our parallelism and

codes can be verified. The GPU accelerated A+

achieves identical quality as the original CPU A+,

which is far better than simple bicubic and better

than other state-of-the-art SR methods.

CPU(ms) GPU(ms) Speed up

Bicubic 27 3 9

Difference&

Collect Feature

8,157 8 1020

PCA 384 15 25

ANR 17,924 125 143

Patches Addition 69 3 23

Overlapping 20,654 2 10327

Overall 47,300 160 295

 PSNR(dB)

CPU A+ vs GPU A+ 88.97

Ground Truth vs CPU A+ 37.84

Ground Truth vs GPU A+ 37.84

Ground Truth vs Bicubic 35.37

Conclusion
We propose a GPU implementation on one of

the best image super-resolution algorithm: A+.

In our work, the A+ is divided into 7 steps, all

of which are parallelized by GPU acceleration.

Specifically, we optimize the code by three

techniques: coalesced memory access,

instruction level parallelism and CPU/GPU

hybrid implementation. Our experiments show

the execution time for converting a video

frame of 1920x1080 to 3840x2160 can be

reduced from 47.3s to 160ms, a 295x speed

up, while the quality of GPU result is exactly

the same as CPU result.

Acknowledge
The authors would like to thank the

following projects: The Shanghai

Zhangjiang national independent

innovation demonstration zone

development fund (No.201501-PD-SB-

B201-001) and the NSFC (61521062,

61527804, and 61420106008), and the

Shanghai Key Laboratory of Digital

Media Processing and Transmissions.

Contact Detail
First Author

Name : Zhangzong Zhao

Email : dragon_nsc2@Hotmail.com

Affiliation : Institute of Image Communication

and Network Engineering, Shanghai Jiao Tong

University

Corresponding Author

Name : Li Song

Email : song_li@sjtu.edu.cn

Affiliation : Institute of Image Communication

and Network Engineering, Shanghai Jiao Tong

University

Reference

1. R. Timofte, V. D. Smet, L. V. Gool,

“Anchored Neighborhood Regression for Fast

Example-Based Super-Resolution,” in

Proceedings of IEEE International Conference

on Computer Vision, pp.1920-1927, Dec.

2013

2. R. Timofte, V.D. Smet, L. V. Gool, “A+:

Adjusted Anchored Neighborhood Regression

for Fast Super-Resolution,” in Proceedings of

Asian Conference on Computer Vision, pp.1-

15, Nov. 2014

mailto:dragon_nsc2@Hotmail.com
mailto:song_li@sjtu.edu.cn

