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ABSTRACT*

Most of the Wyner-Ziv (WZ) video coding schemes in lite-
rature model the correlation noise (CN) between original 
frame and side information (SI) by a given distribution 
whose parameters are estimated in an offline process. In this 
paper, an online CN modeling algorithm is proposed to-
wards a more practical WZ-based error resilient video cod-
ing (WZ-ERVC). In ERVC scenario, the side-information is 
typically generated from the error concealed picture instead 
of bi-directional motion prediction. The proposed online CN 
modeling algorithm achieves the so-called classification 
gain by exploiting the spatially non-stationary characteris-
tics of the motion field and texture. The CN between the 
source and error concealed SI is modeled by a Laplacian 
mixture model, where each mixture component represents 
the statistical distribution of prediction residuals and the 
mixing coefficients portray the motion vectors estimation 
error. Experimental results demonstrate significant perfor-
mance gains both in rate and distortion versus the conven-
tional Laplacian model.  

Index Terms— Wyner-Ziv coding, spatial non-
stationary, correlation noise modeling

1. INTRODUCTION 

In hybrid video coding schemes, motion estimation and mo-
tion compensation (ME/MC) is adopted to exploit temporal 
redundancy between successive frames. Although ME/MC 
achieves high compression efficiency, transmitting the en-
coded video may suffer from error propagations and lead to 
the well-known drifting phenomenon. Recently, inspired by 
the natural error resilient property of Wyner-Ziv (WZ) cod-
ing, WZ-based error resilient video coding (WZ-ERVC) 
schemes have been proposed in literature [1]. The schemes
integrate a joint source-channel coding framework for video, 
and show significant RD performance gains over conven-
tional error resilient schemes, e.g., Intra refresh (IR) and 
forward error correction (FEC) [2].  

The coding efficiency of WZ coding depends critically 
on the capability to model the correlation noise (CN) be-
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tween the original frame and side information (SI) [3]. Tra-
ditionally, the CN is modeled by a given distribution whose 
parameters are offline estimated by assuming that both the 
source data and corresponding side-information are availa-
ble at the encoder side or the decoder side. It is undesirable 
since: (1) the encoder cannot have the error pattern in 
transmission, especially for applications with large end-to-
end delay; (2) the decoder side cannot have the source data, 
otherwise transmission errors would be perfectly eliminated. 
To solve the problem, Brites et. al. proposed an online CN 
modeling algorithm for conventional WZ video coding, 
based on bi-directional ME/MC SI generation [4].  

For ERVC applications, this paper proposes an online 
correlation noise modeling algorithm where SI is typically 
generated from the error concealed picture. In fact, the pre-
diction residual has been de-correlated with the original 
frame, so the major task of error concealment resort to esti-
mating the lost motion vectors according to the coherence 
property of the motion field and the spatial smoothness of 
neighboring blocks. The CN between the source and error 
concealed SI is modeled by a Laplacian mixture model, 
where each mixture component represents the statistical 
distribution of prediction residuals and the mixing coeffi-
cients portray the motion vectors estimation error. Essential-
ly, the proposed CN model describes the spatially non-
stationary characteristics and achieves the so-called classifi-
cation gain  [5]. 

The rest of this paper is organized as follows: Section 2 
provides a brief summary of WZ-ERVC framework. The 
proposed online CN modeling algorithm is studied in Sec-
tion 3. Experimental results validate the efficiency of the 
proposed algorithm in Section 4. Section 5 concludes this 
paper.

2. THE WZ-BASED ERROR RESILIENT VIDEO 
CODING

A general architecture of WZ-ERVC is shown in Fig. 1. 
at the encoder side denotes the current frame through the 
conventional predictive encoder, e.g., MPEG or H.26x en-
gine. To eliminate temporal error propagation, the wave-
form of some P-frames is protected by WZ coding. At the 
decoder side, the MPEG/H.26x bit-stream is firstly decoded. 
If current frame is not contaminated by transmission error, 
the error concealment (EC) module and WZ decoding mod-
ule will be skipped. Otherwise, the EC module would be 
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activated to approximate error-free  by exploiting the 
temporal and spatial correlation of video. Error concealed 
frame  would serve as the SI for WZ decoding of . And 
then, the WZ decoding module analyzes the CN between 
and . With the estimated CN, WZ decoder would decode 
the WZ bit-stream and outputs the final reconstruction .
Theoretically,  is a better description of  than  since 
the WZ decoder can at least correct some of the transmis-
sion errors by parity-check codes. Then,  updates   in 
the frame buffer of the decoder. The following parts are 
dedicated to investigating the CN model by correctly de-
coded information.  
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Fig. 1: The diagram of WZ-based error resilient video 
coding

3. THE PROPOSED CORREALTION NOISE 
MODELING ALGORITHM

A packet loss in transmission damages the decoded frame in 
two folds: it loses both the motion (motion vector, MV) and 
the texture (prediction residual) information of the frame. 
The task of inter-frame EC is to estimate MV of the lost 
blocks because MVs of neighboring blocks are highly corre-
lated while the prediction residual is unpredictable [6]. In 
the proposed algorithm, the transmission error is modeled 
by two parts: error caused by MV estimation error, denoted 
as ; and error caused by the loss of prediction residual, 
denoted as .

The transmission error which is regarded as the CN in 
WZ coding setup, is here modeled by a Laplacian mixture 
distribution which is composed of a series of Laplacian dis-
tributions with mean , i.e. 

 (1) 

where  is a possible value of the DCT coefficient of the 
original frame and  is the corresponding SI generated by 
EC;  is the parameter of a mixture component, which 
represents the energy of prediction residual;  is the coef-
ficient of the mixture model, which represents MV estima-
tion error and  is the index of mixing coefficient ;  is 
normalized to ensure . Since the actual MVs 
of the lost slice are unavailable at the decoder side, both 
and  could be regarded as random variables for the de-
coder.

For the mixture model, to estimate parameters  and 
 is a major concern of the next Section. Because EC is 

generally implemented in pixel domain, we first analyze the 

transmission-induced error and then derive the DCT domain 
CN for WZ decoding. 

3.1 Pixel domain error caused by MV loss 

The  pixel of frame  can be written as 

, (2) 

where  is the motion-compensated (MC) value from 
previous frame , and  is the prediction residual. 

 is the MV of the block in which  is located. The 
motion-compensated interpolation coefficient  satisfies 

, and  denotes the spatial index of the 
pixel in frame  which is used to predict .

When transmission erasure occurs, the EC operation 
approximates  by  

, (3) 

where  is the estimated value of . The mismatch is 
denoted as . If  is available at the 
decoder side, we can obtain the error-free  with 

. By this means, the probabili-
ty of  can be derived from the probability of the cor-
responding , i.e.,

. (4) 
where .
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Fig. 2: The distribution of  along successive frames of 
sampled sequences. 

Fig. 2 shows the distribution of  along successive 
frames of sampled “Mobile” and “Flower” sequences, 
where the scale interval of the horizontal axis is integer pix-
el. It shows that the PDF of  along successive frames 
have a similar distribution. It infers that we can estimate the 
probable distribution of  for frame  by simulating 
EC operation in frame .

After the PDF of  is estimated, the possible value 
of  can be obtained from Eq. (4). Fig. 3 presents the 
possible value of  for a set of pixels of “Mobile” se-
quence, where the blue “o” denotes the error-free pixel val-
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ue , the black “ ” stands for the EC result , and 
the green “ ” is the possible value of  estimated by Eq. 
(4).
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3.2 DCT domain error caused by MV loss 

Because the DCT exploits the spatial correlation of source, 
most WZ video coding schemes are implemented in DCT 
domain. Here, we also analyze the error on DCT coeffi-
cients induced by MV loss.  

The DCT is a linear transform and the DCT coefficient 
 could be expressed as a linear combination of pixels in a 

M-by-M block: 
,  (5) 

where  is the pixel index in the M-by-M block  and  is 
transform coefficient. The possible value of DCT coefficient 

 could be obtained at the decoder as 
, (6) 

where  is the DCT coefficient value, 
and  is the possible pixel value which is estimated 
as Section 3.1.

3.3 Prediction residual loss
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Fig. 4: The estimated PDF  for each coefficient 
band.

In general, the prediction residual can be modeled by a zero 
mean additive Laplacian noise , where

,  (7) 
and  is the variance of the prediction residual [4]. Al-
though the prediction residual of the lost block is unavaila-
ble at the decoder side, its variance  could be approx-
imated from its correctly decoded neighbors.  

Finally, the probability distribution of DCT coefficient 
 at the decoder side could be modeled by a mixture Lap-

lacian noise as Eq. (1), where  can be obtained from Eq. 
(7), and  could be calcu-
lated by Eq. (3) and (4).  

Fig. 4 gives the estimated PDF of each DCT coefficient 
band. The title “(h,v)” of each subplot indicates the horizon-
tal and vertical coefficient index, respectively (e.g., (0,0) is 
the DC coefficient). The blue line is the estimated 
with the proposed Laplacian mixture model, while the black 
dash-and-dot line represents that with conventional Laplace 
model. The vertical red line indicates the actual error-free 
value , and the green vertical lines located on both sides 
of the vertical red line indicate the quantization interval .

 is set to 16 in Fig. 4.  
A larger probability  requires fewer bits for 

the decoder to correct the same amount of transmission er-
ror. It signifies that the proposed modeling algorithm out-
performs the conventional Laplace model in a rate-
distortion sense. A MMSE inverse quantizer reconstructs 
the coefficient  by the centroid of  where .
A superior quality of the reconstructed picture could hence 
be observed.

4. EXPERIMENTAL RESULTS 

To evaluate the proposed CN modeling algorithm, four CIF 
 sequences @15Hz are considered: “Flower”,

“Foreman”, “Mobile” and “Stefan”. In experiments, JM12.2 
with Baseline profile is adopted as the conventional video 
coder, and only the luminance component is considered for 
the RD performance evaluation. The transmission error is 
randomly inserted into both the standard coded bit-stream 
and the WZ bit-stream. The video is encoded with chess-
board FMO pattern, and the extended boundary matching 
error concealment algorithm [7] in the reference software is 
enabled. LDPCA [8] is used to produce the WZ bit-stream, 
and MMSE inverse quantizer is used to minimize the mean 
square error (MSE) distortion of the reconstructed frames.  

As in Section 3.3, the proposed CN modeling algo-
rithm benefits the RD performance: to reduce both the en-
coding rate and the distortion of reconstructed frames. Table 
I gives the significant bit-rate saving of the proposed model 
versus the conventional Laplace model. The parameters in 
the proposed model are estimated as in Section 3, and the 
parameter of the Laplacian model is obtained with offline 
training. The term “QPW” denotes the quantization parame-
ter of WZ video coding. As the setup in H.264, the quanti-
zation step increase by a factor of two for every increment 
of six in QP. 
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Table II shows that the PSNR gain decreases with the 
decrease of QPW. It could be observed that the PSNR gain 
of the proposed model is significant at low bit-rate because 
the distortion of the reconstructed frame highly depends on 
the accurate CN model. With the increase of bit-rate, the 
inaccurate effect of the CN modeling could be gradually 
mitigated with the more previous decoded bit-planes. 

Table I: Rate saving with the proposed model 
QPW 38 34 31 28 25 22 

(Kbps)

Foreman -66 -96 -146 -146 -200 -147
Flower -185 -138 -171 -187 -354 -162
Mobile -158 -167 -245 -291 -431 -315
Stefan -78 -120 -182 -206 -321 -360

Table II: PSNR improvement with the proposed model 
QPW 38 34 31 28 25 22 

 (dB) 

Foreman 1.50 1.18 0.95 0.66 0.42 0.26
Flower 1.70 1.36 1.07 0.77 0.46 0.27
Mobile 1.84 1.46 1.11 0.70 0.45 0.26
Stefan 1.40 1.16 0.93 0.68 0.43 0.27

(a) Laplace model (b) The proposed 

(c) Laplace model (d) The proposed 
Fig. 5: The subjective quality comparison 

Finally, the subjective quality of “Mobile” and “Fore-
man” sequences are contrasted in Fig. 5 (a)(b) and (c)(d), 
respectively. The results are obtained with the coding rate of 
840kbps for “Foreman” and 2, 077kbps for “Mobile”. It 
could be obviously seen that the reconstructed picture with 
the proposed CN model achieves superior subjective quality 
than the conventional Laplacian model.  

5. CONCLUSIONS 

This paper addresses a key issue in WZ video coding: on-
line CN modeling at the decoder side. For ERVC applica-
tions where SI is generated from the error concealed picture, 
the proposed algorithm models the transmission error by a 

Laplacian mixture model which is dynamically consistent 
with the motion field and the spatial smoothness. In the 
Laplacian mixture model between the source and error con-
cealed SI, each mixture component represents the statistical 
distribution of prediction residuals and the mixing coeffi-
cients portray the motion vectors estimation error. Essential-
ly, the proposed CN model describes the spatially non-
stationary characteristics and achieves the so-called classifi-
cation gain. Experiments demonstrate significant perfor-
mance gain in both rate and PSNR versus the conventional 
Laplace model. In our future work, an advanced model ex-
ploiting correlations between neighboring pixels in a spatial 
domain will be investigated. 
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