Sub clustering K-SVD: Size variable Dictionary learning for Sparse Representations
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Abstract Toy example for explanation EXPERIMENTAL RESUL TS

Sparse signal representation from overcomplete The dictionary learning capabilities of K-SVD and the ability to find _ _
dictionaries have been extensively investigated in dominant atoms of subtractive clustering algorithm can be combined to Natural Image expenmentg:

recent research, leading to state-of-the-art results in | | /8arn better dictionaries with proper size. | | o . ..
signal, image and video restoration, One of the most || !N order to show that the centers extracted by subtractive clustering are Dictionaries learned from lena training data

important issues is involved in selecting the proper close to dictionary atoms used to generate the data space, let’s consider a

size of dictionary. However, the related guidelines || SMple case.
are still not established. In this paper, we tackle this
problem by proposing a so-called sub clustering K-
SVD algorithm. This approach incorporates the
subtractive clustering method into K-SVD to retain
the most Important atom candidates. At the same
time, the redundant atoms are removed to produce a
well-trained dictionary. As for a given dataset and
approximation error bound, the proposed approach
can deduce the optimized size of dictionary, which Is
greatly compressed as compared with the one
needed In the K-SVD algorithm.

Highlights

In this paper, we propose a so-called Sub clustering
K-SVD algorithm, which characterizes Its
Improvement on K-SVD method In two main

aspects: (1) An error-driven mechanism IS
Introduced to the dictionary update stage, achieving
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